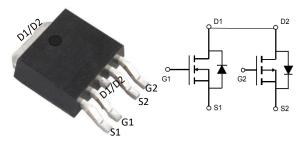


Features


- · High power and current handing capability
- · Lead free product is acquired
- Surface mount package

A		- 4 !
Ap	piic	ation

- Battery protection
- Load switch
- Power management

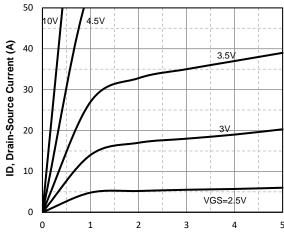
40NP03A: Device code XXXXXX: Code

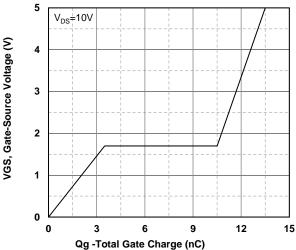
TO-252-4L top view

Marking and pin assignment

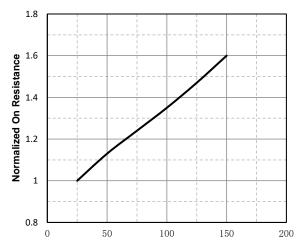
Absolute Maximum Ratings (TA=25℃unless otherwise noted)							
Symbol	Parameter	N-Channel	P-Channel	Unit			
Common	Common Ratings (TC=25°C Unless Otherwise Noted)						
V_{DS}	Drain-Source Breakdown Voltage		30	-30	V		
V_{GS}	Gate-Source Voltage		±20	±20	V		
T_J	Maximum Junction Temperature	150	150	°C			
T _{STG}	Storage Temperature Range	-55 to 150	-55 to 150	°C			
I _S	Diode Continuous Forward Current Tc=25°C		40	-40	Α		
Mounted	Mounted on Large Heat Sink						
I _{DM}	Pulse Drain Current Tested	Tc=25°C	160	-170	Α		
I _D	Continuous Drain Current@GS=10V Tc=25°C		40	-40	Α		
P_D	Maximum Power Dissipation	Tc=25°C	42	46	W		
$R_{\theta JA}$	Thermal Resistance Junction-Ambient((*1 in2 Pad of 2-oz Copper), Max.)	62.5	62.5	°C/W		

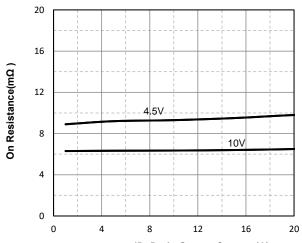
Ordering Information (Example)						
Туре	Package	Marking	Minimum Package(pcs)	Inner Box Quantity(pcs)	Outer Carton Quantity(pcs)	Delivery Mode
XPX40NP03AFX	TO-252-4L	40NP03A	2,500	5,000	35,000	13"reel


N-Ch Electrical Characteristics (TJ=25 ℃ unless otherwise noted)							
Symbol	Parameter	Condition	Min	Тур	Max	Unit	
Static Elect	Static Electrical Characteristics @ TJ = 25°C (unless otherwise stated)						
BV _{(BR)DSS}	Drain-Source Breakdown Voltage	VGS=0V, ID=250μA	30			V	
I _{DSS}	Zero Gate Voltage Drain Current	VDS=30V, VGS=0V		-	1	uA	
I _{GSS}	Gate-Body Leakage Current	VGS=±20V, VDS=0V			±100	nA	
$V_{GS(th)}$	Gate Threshold Voltage	VDS=VGS, ID=250μA	1.0	1.5	2.5	٧	
ı		VGS=10V, ID=20A		6.5	10	mΩ	
$R_{DS(on)}$	Drain-Source On-State Resistance	VGS=4.5V,ID=15A		9.2	15	mΩ	
Dynamic E	lectrical Characteristics @ 1	ΓJ = 25°C (unless otherwi	se state	ed)	ļ		
C _{ISS}	Input Capacitance			1300		pF	
C _{OSS}	Output Capacitance	VDS=15V, VGS=0V, f=1MHz		180		pF	
C _{RSS}	Reverse Transfer Capacitance			110		pF	
Switching (Characteristics		!		1		
Q_g	Total Gate Charge		-	14		nC	
Q_gs	Gate Source Charge	VDS=20V, ID=12A, VGS=4.5V		3.5		nC	
Q_{gd}	Gate Drain Charge			7		nC	
t _{d(on)}	Turn-on Delay Time		-	5		nS	
t _r	Turn-on Rise Time	VDD=12V,ID=5A,		12		nS	
$t_{d(off)}$	Turn-Off Delay Time	VGS=10V, RG=3.3Ω		27		nS	
t _f	Turn-Off Fall Time			10		nS	
Source- Dr	ain Diode Characteristics	! 		!	1		
V _{SD}	Forward on voltage	Tj=25℃,ls=1A,			1.2	V	

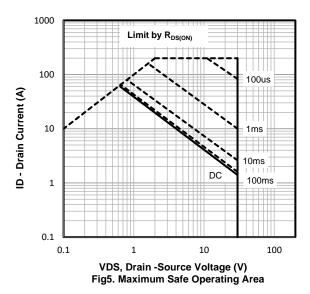


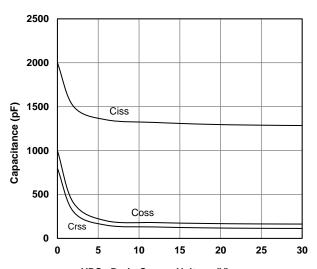
Symbol	Parameter	Condition	Min	Тур	Max	Unit
Static Elec	trical Characteristics @ TJ	= 25°C (unless otherwise	stated)			
BV _{(BR)DSS}	Drain-Source Breakdown Voltage	VGS=0V,ID=-250μA	-30			V
I _{DSS}	Zero Gate Voltage Drain Current	VDS=-30V, VGS=0V			-1	uA
I _{GSS}	Gate-Body Leakage Current	VGS=±20V, VDS=0V			±100	nA
V _{GS(th)}	Gate Threshold Voltage	VDS=VGS, ID=-250μA	-1.0	-1.5	-2.5	V
_		VGS=-10V, ID=-15A	-	8.8	13	mΩ
$R_{DS(on)}$	Drain-Source On-State Resistance	VGS=-4.5V,ID=-10A		12	20	mΩ
Dynamic E	lectrical Characteristics @	TJ = 25°C (unless otherwi	se state	ed)		
C _{ISS}	Input Capacitance		-	2800		pF
C _{OSS}	Output Capacitance	VDS=-15V, VGS=0V, f=1MHz		350		pF
C _{RSS}	Reverse Transfer Capacitance		-	300		pF
	Characteristics			1		
Q_g	Total Gate Charge		-	30		nC
Q_{gs}	Gate Source Charge	VDD=-15V,ID=-15A, VGS=-10V		5.5		nC
Q_{gd}	Gate Drain Charge			7.5		nC
t _{d(on)}	Turn-on Delay Time		-	13	-	nS
t _r	Turn-on Rise Time	VDD=-15V,ID=-15A,	-	20		nS
t _{d(off)}	Turn-Off Delay Time	VGS=-10V, RG=2.5Ω		90		nS
t _f	Turn-Off Fall Time		-	65		nS
Source- Dr	rain Diode Characteristics					
V _{SD}	Forward on voltage	Tj=25℃, Is=-1A,			-1.2	V


N-Channel Typical Operating Characteristics



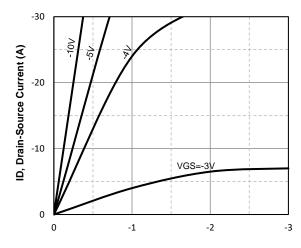
VDS, Drain -Source Voltage (V) Fig1. Typical Output Characteristics

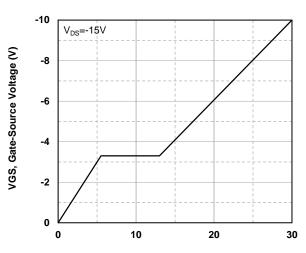

Fig2. Typical Gate Charge Vs.Gate-Source Voltage

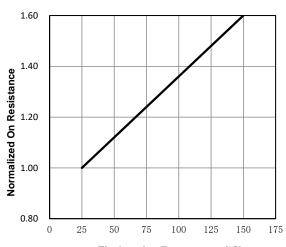


Tj - Junction Temperature (°C)
Fig3. Normalized On-Resistance Vs. Temperature

ID, Drain-Source Current (A)
Fig4. On-Resistance Vs. Drain-Source Current




VDS , Drain-Source Voltage (V) Fig6 Typical Capacitance Vs.Drain-Source Voltage


P-Channel Typical Operating Characteristics

VDS, Drain -Source Voltage (V)
Fig1. Typical Output Characteristics

Qg -Total Gate Charge (nC)
ig2. Typical Gate Charge Vs.Gate-Source Voltag

Tj - Junction Temperature (°C)
Fig3. Normalized On-Resistance Vs. Temperature

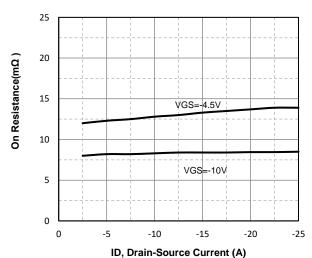
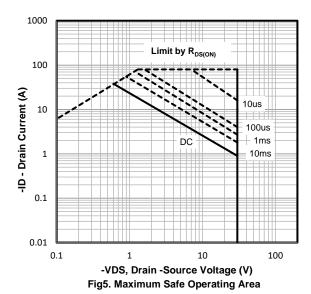
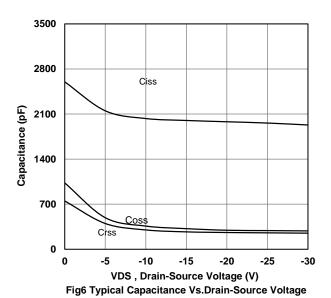
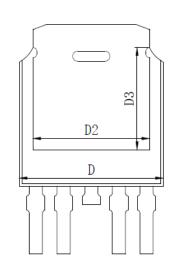
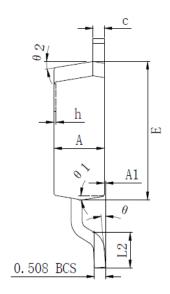
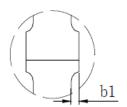




Fig4. On-Resistance Vs. Drain-Source Current







TO-252-4L Package information

Symbol	Dimensions in I	Dimensions in Millimeters(mm)		s In Inches		
Syllibol	Min	Max	Min	Max		
Α	2.200	2.400	0.087	0.094		
A 1	0.000	0.127	0.000	0.005		
b	0.550	0.650	0.022	0.026		
b1	0.000	0.120	0.000	0.005		
С	0.460	0.580	0.018	0.023		
D	6.500	6.700	0.256	0.264		
D1	5.334	(REF)	0.210	0.210(REF)		
D2	5.346	(REF)	0.210(REF)			
D3	4.490	(REF)	0.177(REF)			
E	6.000	6.200	0.236	0.244		
е	1.270(TYP)		0.050(TYP)			
e1	2.540(TYP)		0.100(TYP)			
h	0.000	0.200	0.000	0.008		
L	9.900	10.300	0.390	0.406		
L1	2.988	(REF)	0.117(REF)			
L2	1.400	1.700	0.055	0.067		
L3	1.600(REF)		0.063(REF)			
L4	0.700	0.900	0.028	0.035		
φ	1.100	1.300	0.043	0.051		
θ	0°	8°	0°	8°		
θ1	9°(T	YP)	9°(TYP)			
θ2	9°(TYP)		9°(7	YP)		

Flow (wave) soldering (solder dipping)

Product	Peak Temperature	Dipping Time
Pb device	245℃±5℃	5sec±1sec
Pb-Free device	260℃+0/-5℃	5sec±1sec

This integrated circuit can be damaged by ESD UniverChip Corporation recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedure can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Attention:

- Any and all XPX power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your XPX power representative nearest you before using any XPX power products described or contained herein in such applications.
- XPX power assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all XPX power products described or contained herein.
- Specifications of any and all XPX power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- XPX power Semiconductor CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all XPX power products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of XPX power Semiconductor CO..LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. XPX power believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/ technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the XPX power product that you intend to use.
- This catalog provides information as of Sep.2019. Specifications and information herein are subject to change without notice.